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III. REsuLTS

Computer programs were written which implement (1) and (2)
separately for the magnetic and electric wall cases. The programs
compute the determinant of the matrix as a function of the
unknown transverse wavenumber. The eigenvalue is determined
by noting a change of sign between successive determinant values
and then using quadratic interpolation. This scheme is simple to
implement, and very accurate results can be obtained when the
frequency axis is sampled sufficiently densely. Although this
dense sampling requirement means that the method is computa-
tionally intensive, it also means that eigenvalues which are nearly
degenerate are more likely to be found.

Figs. 3 and 4 illustrate the results we obtain when we apply our
analysis to the geometry illustrated in the insets to the figures.
(This geometry is the only case which was analyzed by both
previous groups and therefore provides a meaningful case for
comparisons between them.) Fig. 3 is a direct comparison be-
tween our results and those of Zhang and Joines, plotted on the
scale used in [7]. The disagreement is quite large and is increasing
as the value of the parameter (s/a) increases. Fig. 4 is a direct
comparison between our results and those of Mazumder and
Saha, plotted on the scale used in [6]. Although small discrepan-
cies remain, it is clear that our results are in agreement with [6]
and with the new results reported in [10].

In order to understand the source of the discrepancy between
the references we tried plotting several other cases. Fig. 5 is our
most successful attempt. The solid lines again indicate the band-
width as reported in {7] and the symbols indicate the bandwidth
defined by the difference in eigenvalues of the first two solutions
associated with a magnetic wall in what we call region 1. These
two modes are the first and third propagating modes of the
structure.

Fig. 6 illustrates the transverse electric field lines for several
values of (s/a) for the first two electric wall modes for one
particular case (¢/b=0.10) for the geometry investigated above.
It is clear that in the limit as s/a — 0.0 the waveguide becomes
rectangular and these two modes reduce to the standard TEgy,
and TE,, modes. (In this limit the width of the base of the “T”
must also go to zero.) As the parameter (s/a) increases, pertur-
bation theory tells us that the modes become mixed and these
simple labels are no longer meaningful. Although some resem-
blance to the TE,, field distribution appears in both cases, it is
clear that using such labels is incorrect and may be misleading. It
is, of course, equally incorrect to label the dominant mode as the
TE,, and we have refrained from so doing. We prefer simply to
label the modes in ascending order of cutoff frequency, i.e. TE,,
TE,,- - -,etc. However, we recognize that other schemes, such as
that proposed in [9], may be more desirable in certain situations.

IV. CoNcLusiONS

The single T-septum waveguide has been analyzed using the
Rayleigh—Ritz—Galerkin technique. The method is a variation of
that used by two previous groups who reported conflicting re-
sults. The results of the new analysis agree closely with those of
Mazumder and Saha [5}, [6] and those of German and Riggs [10]
and disagree with those of Zhang and Joines [7], [8]. The history
of T-septum waveguide has been discussed.
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Optimized Method for Obtaining Permittivity and
Conductivity Profiles of Microwave Materials

MOATAZA A. HINDY

Abstract — A new iterative method for obtaining the distribution of the
relative permittivity €,(z) or electrical conductivity o(z) of microwave
semiconducting materials is presented. The semiconducting material is
fitted in a rectangular waveguide which is terminated by a variable short
circuit. The reflection coefficients of the system are measured at a single
frequency and at different positions of the moving short. The measured
coefficients are used in the iterative process of solving the inverse problem
by obtaining the functional gradient [1], [2]. The method takes into
account continuous and discontinuous profiles.

I. INTRODUCTION

Previously the solutions of the ill-posed electromagnetic in-
verse problems were discussed by Morozov [3] and Tikhonov [4].
Electromagnetic probing of an inhomogeneous stratified medium
using time- and spectral-domain analyses of reflection coeffi-
cients is presented by Bolomey er al. [5]. The computed results
are in general oscillating. The optimization technique is used with
the direct method and the minimum of the cost function is
reached after 65 iterations, which is large. The main drawbacks of
the time- and spectral-domain methods are with discontinuous
profiles. Approximate construction of the dielectric constant pro-
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Fig. 1. The inhomogeneous layer is fitted 1n a waveguide,

file from its impulse response is discussed in [6], while in [7] an
iterative scheme in functional space is presented using the re-
flected power for a set of discrete frequencies.

In this paper the iterative functional gradient method (FGM)
[1], [2] is applied to determine the profiles of ¢/(z) and o(z) for a
semiconducting layer at microwave frequency. A variable load
technique is used rather than variations in frequency, due to the
fact that microwave generators and waveguides have narrow
frequency bands. But informative measurements, needed for solv-
ing such an inverse problem, require a wide band of frequency.

II. ANALYSIS OF THE FUNCTIONAL GRADIENT METHOD

Consider the experimental setup of the problem in Fig, 1. The
input admittance y, (z) at the incremental layer dz is

(yin(2) + dy(2)) + y(z) tanh(y(z) dz) )
9(2) +(pa(2) + dyo(2)) tanh (y( z) dz)

where y(z) and y(z) are, respectively, the normalized guided
wave admittance and the complex propagation constant in the
layer dz:

2(2) = (12 e(2) = (Ao /A7) 7 /(1= (Mo /A.))

yin(2) = »(2)

L
(1a)
¥(2) = jo(m(2) ()= (Ao /A)) (ko) (1b)
mel(z) =1
Obtaining the real and imaginary parts of (1a) and (1b), we get
¥(2) = 4(C(2) - jD(2))
¥(2) = 4,(D(2) + jC(2))

o(2) = [(A(2)+e2(2) P+ ()]
D(2) =[(e2(2) + e2(2) 2= e(2)]

A =[21-( /1))

A, =V2m/},

€ =€, + je'.

Ao )2
() =6 (=[]

€'(z) =0(z)/eqw.

Here Ay and ¢, are the free-space wavelength and the permittiv-
ity, respectively, A, is the cutoff wavelength of the waveguide,

and « is the angular frequency. If dz is chosen as small as
possible, (1) will have the form

., 9(2)

d in zZ
a2 0,
W,

dz

(R
+JA2( y —2Ale(z)). (2)
In [8] cases of dielectrics and semiconductors with one inhomo-
geneous parameter ar¢ considered. In this paper cases of materi-
als with two inhomogeneous parameters (e,(z),0(z)) will be
discussed. '

III. CASE OF AN INHOMOGENEOUS SEMICONDUCTOR
HAVING UNKNOWN €, = f(z) AND KNOWN o = f(z)

We suggest an initial solution €’(z). The corresponding calcu-
lated reflection coefficient is Re/? and the real measured reflec-
tion coefficient is R,e/?r. The functional p[¢’(z)], which evalu-
ates the difference between measured and calculated coefficients
for N positions of the short circuit (S.C.), has the form

- ,
P["(Z)] = z=:1 '(RrﬂzejQr'" - RnejQ”) ’ (3)

where 7 is related to the order number of measurement.
If the initial solution is assumed to be of the form

€u(2) =€(2)+he(z2) (4)
where ¢/, (z) is a corrective function and 4 is a modifying
parameter, the corresponding admittance change is

Yu(2) = yu(2) + iy (2). (5)

Equation (5) must sdtisfy the Riccati equation, (2); hence from
(2), (4), and (5) and neglecting the terms containing h* we get

. dycr( Z) ' ,
—-J d= =2B1.V1n(z)ycr(z)_BZECr(Z) (6)
with the condition y, (L) =0, and
B, =4,/4 B, =24,4,.
Solution of (6) has the form
(2 = By [, (0) - efiBrdrti gy ()
z
The gradient of the functional (3) is
N
Bp[e(2)]i= X 2Re[AS,(S*, - $*)] (8)
n=1 )
where
S = Re'@

AS=—28y,(0)/(1+ y,(0))?

—2jB, :
o b @ e e ()
1+ y,(0 0

From (8) and (9) we get

Ap[e'(z)] =fOLG(:)heér(z) dz (10)

where
N 4B'7 Sr*n_Sn*
G(z)=ZRe———JI »( : 2)
(1+ ».(0))

n=1
From the condition of a minimum functional [1]-[3] we have

he! (z) =—1G(z2). (12)

e~/21‘31 /('; vl dydu . (11)
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The new corrected solution is
€, (z) =€¢(2)—1G(z) (13)

where ¢ is a modifying optimizing parameter, which must satisfy
the condition

min p[Re’2(¢(2) - 1G(2))]. (14)

Using a suitable minimizing technique one can choose the opti-
mum value of ¢ which minimizes the functional p of (14).

Starting again from €/,(z) as an initial solution, the iterative
cycle is repeated until we have

olen(z)|<+8
where 8 is within the allowable range of error.

IV. CASE OF SEMICONDUCTOR WHICH Has KNOWN € (z)
AND UNKNOWN 6(z)

The corresponding differential equation which determines the
corrective function g, (z) is

. (2)

5 (15)

= j2 B -2

J 1ym(z)ycr(z) 60 acr(z)'
Solving (15) we get
(16)

B 4
ycr(O) = 2 fLacr(Z) e'IZB1f0‘Vm(u, dydu dz.
wey Yo

Following the same steps as with (8)-(10) we obtain an expres-
sion for the functional gradient:

8e[0(2)] = ["D(2) ha(2) ds (17)

where
Y. 4B, (8%, —5F)
Zre | (140, 0)
and from the condition of the minimum functional,
hao,(z) =—1tD(z)
and the new corrected solution,
0,(z) =0(z)—1tD(z) (20)

t is selected by an optimizing program to satisfy the condition

minp[ S(o(2) ~ D(2))]. (21)

D(Z) — e—jZBlf(‘)vm‘,,(u,d)du

(18)

(19)

V. NUMERICAL EXAMPLES

Example 1

A semiconducting material has known €’(z) and unknown 6(z)
of the forms

e(z2)=Z/L+4
o(z) =9exp(—1.5Z/L) (Q-m) .
Two suggested initial solutions are tried (Fig. 2):
0,(z) =4-25Z/L (Q-m)™"
0,(z)=9-7Z/L (2-m)~"

where Z/L €{0:1], N=17. Using o;(z) and o0,(z) the final
solutions S;(z) and S,(z) are obtained after seven and three
cycles of iterations, respectively, at a single frequency of 32 GHz.
For the real profile o,(z) with a discontinuity at Z/L=0.5,

’(z) Sf' m-!
9
8
6
4
2
0.7 14
Fig. 2 o, o,, and o, are real distributions. o; and o, are imtial profiles. Sy,

5. Sy1» Saz. and Sy, are the solutions obtained.

éz) ,

€ Sl;_
7 F=— — A== (R = = -
6
5
A
3
2
1

me
0 2 b 6 8
Fig 3. €, €}, € €}, and ¢}, are real profiles. ¢/ is the initial solution. 5. S,

S3, Sy, and S, are the solutions obtained.

profiles Sa;(z) and Sa,(z) are obtained after 11 and five itera-
tions, respectively. For the real pulsating distribution g,(z), the
solution S;,(z) is reached after three cycles.

Example 2

Fig. 3 illustrates the solution for four cases of materials which
have the same known conductivity, o(z)=2Z/L+1 (Q-m)!
and different unknown permittivity:

€(z) =2
¢(z) =2.5+10(Z/L—0.5)°

e(z)=5-3Z/L

er(z)="1.

The four samples have the same thickness (0.8 cm). Each is fitted
in a waveguide and the reflection coefficients (due to 16 load
variations) are measured at a single frequency of 9.4 GHz. For
each of the four problems, only one initial solution €/(z) is
suggested:

¢(z) =Sexp|-0.8(2z/L -1)7].

The solutions S$,(z), $,(2), S;(z), and S,(z) are obtained for
€/(2), €(z), €(z), and €,(z) after six, five, 11, and seven
iterative cycles, respectively. The reconstruction accuracy de-
creases for points close to the farthest interface because the initial
solution differs greatly from the real, and additional regulariza-
tion cycles are needed with a modified functional. This is done in
reconstructing €3(z) and e4(z) (Fig. 3) and better accuracy is



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 5, MAY 1989 925
TABLE 1
Z mm 0 0.002 {0.004 [0.005 [0.01]0.02]0.03{0,04 [0.05 0.1] 0.5 1 | 1.5{ 2 3
Real 67 (z) |33 2 |16 10 |6 2.3 |1.25{0.75 0.5 0.2 jo.2 lo.2 {0.2 lo.2 0.2
(ohm.m)™"
Initial 6-(z)| 35 32 130 21 |22 |13 8 14.75| 4 j0.4 [0.4 f0.4 (0.4 (0.4 [0.4
(ohm.m)™"
Reached 6(z)[33.2}26.2| 16.5 | 11 ] 6.52.5 ]1.250.75 0.5 [0.25 [0.22 {0.21(0.22 [0.22 |0.22
(ohm.m)™"

realized after one cycle. For the real pulsating €/(z) a solution
S,(2) is reached after four iterations.

Example 3

Table I illustrates the application of the gradient technique for
obtaining the conductivity profile of a lossy semiconductor which
has €(z)=12— Z/L and unknown inhomogeneous o(z). The
layer thickness is 3 mm, N =16, and the frequency is 10 GHz.
From the table it is clear that the obtained o,(z) distribution is
very close to the real one. The only limitation, on solving for
semiconductors having high parameter values, is to optimize the
layer thickness by

A/4<L<A/2
where A is the average wavelength in the tested sample. This

limitation ensures that variations in the measured reflection
coefficients are due to load variations.

VL

It is clear from the above numerical experiments that the
iterative technique of the FGM is very efficient in determining
the inhomogeneous profile of the complex dielectric constant of
materials. The functional reaches its global minimum in a finite
number of iterative cycles and the final solution obtained is
unique and independent of the initial guess. One need not have
a priori information about the medium, but only information
about the maximum and minimum values of the desired function.
The FGM does not have restrictions on the initial solution and it
is applicable with good approximations to discontinuous func-
tions. The number of measurements N must be sufficient to give
true information about the probed medium, and optimum N is
given by 20 > N >12. All the N measurements are carried out at
a single frequency. The frequency error (Af) must not exceed 5
percent. At 36.524 GHz (for a medium which has an average
€(z)=12 and o(z)=95), Af =16 percent will cause errors in
the evaluated reflection coefficients; AR = +3.5 percent and
AQ = +8.477 percent. The corresponding errors in the recon-
structed €'(z) and o(z) are +4.55 percent and +8.3 percent,
respectively. These error values will differ for different materials.

DiscussioN AND CONCLUSIONS

'
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Transmission Properties of a Right-Angle Microstrip
Bend with and Without a Miter

ANTONIOS D. BROUMAS, HAO LING, MEMBER, IEEE, AND
TATSUO ITOH, FELLOW, IEEE

Abstract —Based on the waveguide model, the transmission properties of
a microstrip bend with and without a miter are investigated using the
Green’s theorem approach. Unlike the conventional mode-matching tech-
nique, this approach does not require a modal description of fields inside
the discontinuity region. Scattering parameters for the bend are presented.
They agree well with the qﬁasi—static results at low frequencies. Significant
improvement in the transmission properties is observed for the bend with a
miter.

I. INTRODUCTION

A right-angle microstrip bend is one of the most common
discontinuities encountered in microstrip-based integrated cir-
cuits. It is normally used to provide flexibility in circuit layout.
Accurate characterization of the transmission properties of a
microstrip bend therefore plays an important role in the success-
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