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III. RESULTS

Computer programs were written which implement (1) and (2)

separately for the magnetic and electric wall cases. The programs

compute the determinant of the matrix as a function of the

unknown transverse wavenumber. The eigenvalue is determined

by noting a change of sign between successive determinant values

and then using quadratic interpolation. This scheme is simple to

implement, and very accurate results can be obtained when the

frequency axis is sampled sufficiently densely. Although this

dense sampling requirement means that the method is computa-

tionally intensive, it also means that eigenva.lues which are nearly

degenerate are more likely to be found.

Figs. 3 and 4 illustrate the results we obtain when we apply our

analysis to the geometry illustrated in the insets to the figures.

(This geometry is the only case which was analyzed by both

previous groups and therefore provides a meaningful case for

comparisons between them.) Fig. 3 is a direct comparison be-

tween our results and those of Zhang and Joines, plotted on the

scale used in [7]. The disagreement is quite large and is increasing

as the value of the parameter (s/a) increases. Fig. 4 is a direct

comparison between our results and those of Mazumder and

Saha, plotted on the scale used in [6]. Although small discrepan-

cies remain, it is clear that our results are in agreement with [6]

and with the new results reported in [10].

In order to understand the source of the discrepancy between

the references we tried plotting several other cases. Fig. 5 is our

most successful attempt. The solid lines again indicate the band-

width as reported in [7] and the symbols indicate the bandwidth

defined by the difference in eigenva.lues of the first two solutions

associated with a magnetic wall in what we call region 1. These

two modes are the first and third propagating modes of the

structure.

Fig. 6 illustrates the transverse electric field lines for several

values of (s/a) for the first two electric wall modes for one

particular case (t/b = 0.10) for the geometry investigated above.

It is clear that in the limit as s/a ~ 0.0 the waveguide becomes

rectangular and these two modes reduce to the standard TEO1

and TE20 modes. (In this limit the width of the base of the “ T“

must also go to zero.) As the parameter (s/a) increases, pertur-

bation theory tells us that the modes become mixed and these

simple labels are no longer meaningful. Although some resem-

blance to the TEZO field distribution appears in both cases, it is

clear that using such labels i: incorrect and may be misleading. It

is, of course, equally incorrect to label the dominant mode as the

TEIO and we have refrained from so doing. We prefer simply to

label the modes in ascending order of cutoff frequency, i.e. TEL,

TEZ,. . . , etc. However, we recognize that other schemes, such as

that proposed in [9], may be more desirable in certain situations.

IV. CONCLUSIONS

The single T-septum waveguide has been analyzed using the

Rayleigh–Ritz-Galerkin technique. The method is a variation of

that used by two previous groups who reported conflicting re-

sults. The results of the new analysis agree closely with those of

Mazumder and Saha [5], [6] and those of German and Riggs [10]

and disagree with those of Zhang and Joines [7], [8]. The history

of T-septum waveguide has been discussed.
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Optimized Method for Obtaining Permittivity and

Conductivity Profiles of Microwave Materials

MOATAZA A. HINDY

Abstract —A new iterative method for obtaining the distribution of the

relative permittivity C,(z) or electrical conductivity o(z) of microwave

semiconducting materials is presented. The semicondncting material is

fitted in a rectangular waveguide which is terminated by a variable short

circuit. The reflection coefficients of the system are measured at a single

frequency and at different positions of the moving short. The measured

coefficients are used in the iterative process of solving the inverse problem

by obtaining the functional gradient [1], [2]. Tbe method takes into

account continuous and discontinuous profiles.

I. INTRODUCTION

Previously the solutions of the ill-posed electromagnetic in-

verse problems were discussed by Morozov [3] and Tikhonov [4].

Electromagnetic probing of an inhomogeneous stratified medium

using time- and spectm-domain analyses of reflection coeffi-

cients is presented by Bolomey et al. [5]. The computed results

are in general oscillating. The optimization technique is used with

the direct method and the minimum of the cost function is

reached after 65 iterations, which is large. The mam drawbacks of

the time- and spectral-domain methods are with discontinuous

profiles. Approximate construction of the dielectric constant pro-
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Fig. 1. Theinhomogeneous layer is fitted lnawavegulde.

file from itsimpulse response is&scussed in[6], wMlein [7] an

iterative scheme in functional space is presented using the re-

flected power for a set of discrete frequencies.

In this paper the iterative functional gradient method (FGM)

[1], [2] is applied to determine the profiles of c’(z) and u(z) for a

semiconducting layer at microwave frequency. A variable load

techniques used rather than variations infrequency, due to the

fact that microwave generators and waveguides have narrow

frequency bands. But informative measurements, needed for solv-

ing such an inverse problem, require a wide band of frequency.

II. ANALYSIS OF THE FUNCTIONAL GRADIENT METHOD

Consider the experimental setup of the problem in Fig. 1. The

input admittance y,n( z ) at the incremental layer dz is

~in(zj = ~(z) (yin(z)+~,.(z))+ Y(Z) tanh(y(z) dz) (1)

Y(z)+(.Y,JZ)+4L(Z))tanh(Y(z) ~z)

where y(z) and y(z) are, respectively, the normalized guided

wave admittance and the complex propagation constant in the

layer dz:

Y(z) = (h(z)%(z) -( Ao/Ac)2)’’2/(l-( Ao/&)’)”2

(la)

Y(z) = @( Pk(A(4 –(Ao/a,,)2)1’2( poco)l’~ (lb)

pk(z) =1 ck = e, + jc”.

Obtaining the real and imaginary parts of (la) and (lb), we get

y(z) = A,(c(z) – jD(z))

y(z) =A2(D(z)+jC(z))

c(z) = [( C’’(Z) +C’’’(Z)+C’’ +C’(Z)]”2

D(z) = [( C’’(Z) +C’’’(ZC)’’’– C’(Z)]”2

A,= [2(1 -( Ao/A,)’)]l°

AZ =fiT/AO

()
2

c’(z) =6,(Z)– ;
‘

6“(Z) = u(z)/60kl.

Here & and co are the free-space wavelength and the permittiv-

ity, respectively, A, is the cutoff wavelength of the waveguide,

and u is the angular frequency.

possible, (1) will have the form

923

If dz is chosen as small as

dyifl( z) 13(z)
— = –2A1’A2—

(

Y,:(z)
+ jA2 ~

dz
1

–2,4,4Z) (2)
~o 1

In [8] cases of dielec~rics and semiconductors with one inhomo-

geneous parameter are considered. In this paper cases of materi-

als with two inhomogeneous parameters (Cr(:), u(z)) will be

discussed.

III. CASE OF AN INHOMOGENEOUS SEMICONDUCTOR

HAVING UNKNOWN Cr = ~(z ) AND KNOWN u = ~(z)

We suggest an initiaf solution c’(z). The corresponding calcu-

lated reflection coefficient is ReJQ and the real measured reflec-

tion coefficient is R,aJQ,. The functional p [c’( z )], which evalu-

ates the difference between measured and calculated coefficients

for N positions of the short circuit (S.C.), has the form

N

P[c’( z)] = x l(R,,,leJQr” – RMeJQ,) /2 (3)
~=1

where n is related to the order number of measurement.

If the initial solution is assumed to be of the form

(;,(z) =6’(Z)+ k:,(z) (4)

where CL,(z) is a corrective function and h is a modifying

parameter, the corresponding admittance change is

Y,.(z) ‘Y,.(z)+ ~Ycr(z) (5)

Equation (5) must satisfy the Riccati equation, (2); hence from

(2), (4), md (5) and neglecting the terms containing hL we get

.dYcr(z)’
— = 2B1.v,n(z)Ycr(z)– ~’f:r(~)

‘J dz

with the condition ycr ( L) = O, and

B1 = Az/Al Bl = 2AlAz.

Solution of (6) has the form

Y.,(z) = jBz~Lc&(o) .e~~–/~%V,.(U,~)J~ du
z

The gradient of the functional (3) is

Ap[d(z)]:= ~ 2Re[&7,,( ~,*,, -~;)]
??=1

where

S= Re’Q

AS= -2 Ay,n(0),/’(l+ y,n(()))2

– 2 jB2
2jzhf,r(z)~-2B2:nu~,dUdz,

= (1+ y,.(o)) o

From (8) and (9) we get

Ap[c’(z)] =~%(:)ke:, (z) dz
o

where

(6)

(7)

(8)

(9)

(10)

G(z) = f Re

[

J4B2 ( ~, ,,,

I

* - $:) e_,2B,,;,,n(,,, d,dL, ~11)

8=1 (1+ y,”(o))’

From the condition of a minimum functional [1]–[3] we have

hC:r(Z)=–tG(Z), (12)
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The new corrected solution is

c:(z) =#(z)-iG(z) (13)

where t is a modifying optimizing parameter, which must satisfy

the condition

m~p[ReJQ(c’(z) –tG(z))]. (14)

Using a suitable minimizing technique one can choose the opti-

mum value of t which minimizes the functional p of (14).

Starting again from CL(z) as an initial solution, the iterative

cycle is repeated until we have

plcj(z)l <is

where 8 is within the allowable range of error.

IV. CASE OF SEMICONDUCTOR WHICH HAS KNOWN E, ( z)

AND UNKNOWN U(z)

The corresponding differential equation which determines the

corrective function UC,(z) is

dye,(z)
— = W, Y,.(Z) YC,(Z) - +%(z).

dz
(15)

Solving (15) we get

B2

Ycr(0) = ~ ~LUcr(Z) e–J2BlL~1n(”,d)du dz (16)

Following the same steps as with (8)–(10) we obtain an expres-

sion for the functional gradient:

Ap[u(z)] ‘~ L~(Z)hCTcr(Z) dz (17)
o

where

N 4BZ

[

(S;n- s:)
D(z) = ~~1 ~ Re

– 2Blj:V,n, n(U, t/)&I

(l+y,n,n(o))’e ‘ 1
(18)

and from the condition of the minimum functional,

hoc,(z) = –tD(z) (19)

and the new corrected solution,

um(z)=u(z)– @z) (20)

t is selected by an optimizing program to satisfy the condition

m~p[S(u(z) –tD(z))]. (21)

V. NUMERICAL EXAMPLES

Example 1

A semiconducting material has known c’(z) and unknown u(z)

of the forms

c’(z) = Z/L +4

u(z) =9exp(–1.5Z/L) (Q. m)-l.

Two suggested initial solutions are tried (Fig. 2):

IJI(Z) =4–2.5z/L (fl. m)-l

~2(z) ‘9–7z/L (Q”m)-l

where Z/L G [0: 1], N =17. Using Ul(z) and Uz(z) the final

solutions SI ( z) and S2(Z) are obtained after seven and three

cycles of iterations, respectively, at a single frequency of 32 GHz.

For the real profile u.(z) with a discontinuity at Z/L= 0.5,

t
6’(z) ~-lm-l

t

2(

S:l Lb q.\ .- 2mm

0.7 14

Fig. 2 u, O., and Ufi are real distributions. al and o~ are imtial profiles. S1.
S2, ,Stil, Sa2, and Skl are the solutions obtained.

E-----Q
6

5

4

2 ---- -----

1 s;

I ‘mm

0 2 4 6 8

Fig 3. t;, Ci, C$ (~, and c; are real profiles. cf is the l~tial ~OIutlOn. &. &,

S3, S4, and Sh are the solutlons obtained.

profiles Sal (z) and Sa2 ( z) are obtained after 11 and five itera-

tions, respectively. For the real pulsating distribution IJ~(Z ). the
solution Sfil ( z ) is reached after three cycles.

Example 2

Fig. 3 illustrates the solution for four cases of materials which

have the same known conductivity, u(z) = Z/L+ 1 (Q ~m)- 1

and different unknown permittivity:

(;(z) =2 cj(z) =5–3Z/L

($(Z) = 2.5+ 10( Z/L –0.5)2 Cj(z) =7.

The four samples have the same thickness (0.8 cm). Each is fitted

in a waveguide and the reflection coefficients [due to 16 load

variations) are measured at a single frequency of 9.4 GHz. For

each of the four problems, only one initial solution e;(z) is

suggested:

c:(z) = 5exp [ –0.8(2z/L –1)2] .

The solutions Sl(z), S,(z), Sj(z), and S4 (z) are obttimd for

c;(zL c;(z). c:(zJ ad c4(z) after six> five> 11, and seven
iterative cycles, respectively. The reconstruction accuracy de-

creases for points close to the farthest interface because the initial

solution differs greatly from the real, and additional regulariza-

tion cycles are needed with a modified functional. This is done in

reconstructing c~( z) and [j(z) (Fig. 3) and better accuracy is
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0

TABLE I

Zlnm

Real&(z)

(ohm. m)-’

Initial &(z

(ohm.m)-l

Reached ~ (z

(ohm.m)-l

33

35

33.2

~

.002 0.004

26 16

32 30

I

L

?6.2 16.5

T
.005 0.01

10 6

27 22

L

11 6,5

—
,02
—

3

I

5

—

).03
—

1.25

8

.25

————r,04 0.0 0.1

,75 0.5 0.2

,75 4 0.4

75 0.5 0.25

— i

0.5 1
—

.2 0.2

.4 0.4

.22 0.21

T
1.5 2 3

‘.2 0.2 0.2

J!__l.i

.4 0.4 0.4 ,

.22 0.22 0.22

realized after one cycle. For the real pulsating cj(z) a solution conwxate gradient method for the solution of electromagnehc radmtion

S~(z) is reached after four iterations. - - “

Example 3

Table I illustrates the application of the gradient technique for

obtaining the conductivity profile of a lossy semiconductor which

has c’(z) =12 - Z/L and unknown inhomogeneous u(z). The

layer thickness is 3 mm, N =16, and the frequency is 10 GHz.

From the table it is clear that the obtained Ul(z) distribution is

very close to the real one. The only limitation, on solving for

semiconductors having high parameter values, is to optimize the

layer thickness by

~/4<L<~/2

where ~ is the average wavelength in the tested sample. This

limitation ensures that variations in the measured reflection

coefficients are due to load variations,

VI. DISCUSSION AND CONCLUSIONS

It is clear from the above numerical experiments that the

iterative technique of the FGM is very efficient in determining

the inhomogeneous profile of the complex dielectric constant of

materials. The functional reaches its global minimum in a finite

number of iterative cycles and the finaf solution obtained is

unique and independent of the initial guess. One need not have

a priori information about the medium, but only information

about the maximum and minimum values of the desired function.

The FGM does not have restrictions on the initial solution and it

is applicable with good approximations to discontinuous func-

tions. The number of measurements N must be sufficient to give

true information about the probed medium, and optimum N is

given by 20> N >12. All the N measurements are carried out at

a single frequency. The frequency error (A~) must not exceed 5

percent. At 36.524 GHz (for a medium which has an average

c’(z) =12 and u(z) = 5), Af = + 6 percent will cause errors in

the evaluated reflection coefficients; AR= t 3.5 percent and

AQ = + 8.477 percent. The corresponding errors in the recon-

structed c’(z) and u(z) are +4.55 percent and + 8.3 percent,

respectively. These error values will differ for different materials.
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Transmission Properties of a Right-Angle Microstrip

Bend fiith and Without a Miter

ANTONIOS D. BRQUMAS, HAO LING, MEMBER. IEEE, AND

TATSUO ITOH, FELLOW, IEEE

Abstract —Based on the waveguide model, the transmission properties of

a microstrip bend with and without a miter are investigated using the

Green’s theorem approach: Unlike the conventional mode-matching tech-

nique, this approach does not require a modal description of fields inside

the discontinuity region. Scattering parameters for the bend are preseoted.

They agree well with the quasi-static results at low frequencies. Significant

improvement in the transmission properties is observed for the bend with a

miter.

I. INTRODUCTION

A right-angle micro:trip bend is one of the most common

discontinuities encountered in microstrip-based integrated cir-

cuits. It is normally used to provide flexibility in circuit layout.

Accurate characterization of the transmission properties of a

microstrip bend therefore plays an important role in the success-
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